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Abstract—In this paper, we focused on building a universal haptic texture models library and automatic assignment of haptic texture

models to any given surface from the library based on image features. It is shown that a relationship exists between perceived haptic

texture and its image features, and this relationship is effectively used for automatic haptic texture model assignment. An image feature

space and a perceptual haptic texture space are defined, and the correlation between the two spaces is found. A haptic texture library

was built, using 84 real life textured surfaces, by training a multi-class support vector machine with radial basis function kernel. The

perceptual space was classified into perceptually similar clusters using K-means. Haptic texture models were assigned to new surfaces

in a two step process; classification into a perceptually similar group using the trained multi-class support vector machine, and finding a

unique match from within the group using binarized statistical image features. The system was evaluated using 21 new real life texture

surfaces and an accuracy of 71.4 percent was achieved in assigning haptic models to these surfaces.

Index Terms—Perceptual space, multi-dimensional scaling, image features, psycho-physics
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1 INTRODUCTION

ONE of the imminent bottlenecks in current haptics tech-
nology for virtual reality (VR) is the difficulty of haptic

modeling. Haptic feedback in a virtual environment usually
requires a geometric model of the environment as well as
haptic property models associated with the geometry [1].
For geometry modeling, many available tools, resources,
and algorithms for computer graphics can be utilized for
haptic modeling since a single geometric model is usually
shared. However, models for haptic properties, e.g., stiff-
ness, friction, surface texture, are much harder to obtain.
Modeling usually involves manual tuning of parametric
models, e.g., [2], [3], [4] or training of non-parametric inter-
polation models, e.g., [5], [6], [7].

One of the emerging techniques for haptic modeling is
the data-driven haptic modeling [8], [9], [10], [11]. In this
technique, the signals originating from tool-surface interac-
tion are recorded, e.g., high frequency vibrations generated
by stroking a surface. These signals are subsequently used
in rendering for approximation of the given surface. Based
on data-driven modeling, the authors in [9] recorded the

normal force and scanning velocity during interaction and
rendered realistic isotropic haptic textures using that infor-
mation. Similarly, more complex anisotropic textures were
modeled and rendered in [12], [13] by including the direc-
tion of scan velocity along with normal force in the input
data. One of the reasons for the huge popularity of data-
driven modeling is that the model is created directly from
interaction data regardless of the object properties or micro
geometry of the surface. In case of manual tuning, these fac-
tors significantly influence the modeling and thus make it a
cumbersome task.

Another positive aspect of data-driven modeling is the
ease in generation of data. The model is captured by strok-
ing a given surface and quality of the model is determined
by comparing the error between the rendered and actual
signal. On the other hand, the services of an expert are
always required in manual tuning. All the parameters of the
model have to be manually examined or felt by an expert or
a designer and tuned according to the given surface.

With the introduction of data-driven technique, haptic
modeling has become significantly robust but there still
remain some underlying problems that render model mak-
ing a difficult task. First, every object has to be somehow
probed by a sophisticated sensing hardware to get data for
modeling. Data-driven modeling is efficient in comparison
with manual tuning, but it can still take a lot of time and
effort to model a significantly large number of surfaces. For
example, modeling all the surfaces in a complex virtual real-
ity environment (e.g., 3D gaming environment) can prove to
be a difficult task using data-driven modeling. Second, as it
is evident that an object needs to be physically present in
order to be modeled. Certain scenarios can arise where
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modeling an object without physical presence may be
required. One such instance can be modeling all the fabrics
in an online shopping outlet. Keeping these shortcomings in
mind, we need to develop a method where haptic modeling
is more robust, easy to adapt to new surfaces, and detached
from dependence on physical presence of the objects.

Another difficulty in haptic modeling is the association of
haptic property models with the geometry. Currently, such
property authoring is usually done manually by a haptic
programmer directly in a rendering program code, e.g.,
openHaptics and CHAI3D. Some efforts exist for providing
an intuitive tool for haptic authoring, e.g., [14], [15], but
manual assignment and tuning still takes some efforts.

Our research thrust is originated from the need of effi-
cient haptic modeling. The broad goal of the current
research is to build a “Haptic texture library” – a collection
of a large number of haptic models that describe a wide
range of haptic surfaces - and to develop a method that
automatically authors the haptic property of the environ-
ment with minimal effort using the library. We hope that
with this tool, application-ready and haptic-enabled envi-
ronment models can be easily generated without extensive
modeling.

As one of the attempts towards this goal, this paper
proves the concept of image texture-based automatic
assignment with focus on haptic texture. It is reported that
haptic texture has, up to some extent, correlation with
image texture [16], [17], [18]. However, it is also well known
that two similar looking surfaces can have totally different
haptic perceptions. This indicates that pure image-based
texture classification techniques may fail to distinguish sur-
faces with different haptic feelings. Although images can be
misleading at times, but there definitely exists an overlap in
the information conveyed through visual and haptic cues,
as mentioned earlier. This paper uses that information to
cater for the perception aspects of every image and use it in
automatic assignment of haptic texture models. The main
purpose of adapting this image based approach is to make
the process of haptic modeling more robust, intuitive, and
easy to implement and generalize.

The overall framework required to accomplish this task
can be tabulated as follows:

1 - One time data driven modeling of texture surfaces to
form a library. The range of surfaces should cover
most of the daily life haptic interactions.

2 - A user study to establish a perceptual space where all
the surfaces from the library are represented based
on their perceptual characteristics of haptic texture.

3 - Extract image features of all the texture surfaces.
4 - Establish a relationship between haptic perception

(step 2) and image features (step 3). Haptic texture
models and image features are stored together.

5 - Based on the relationship established in step 4, carry
out automatic haptic texture model assignment to
newly encountered - outside library - texture surfa-
ces, using the library.

6 - Render the assigned model from library as a haptic
model for the newly encountered texture surface.

Data driven modeling and rendering are not addressed
here due to scope of the article. However, the details of the
modeling and rendering techniques used in the current
study can be found in [12] and [13], respectively. The three
dimensional input space (2-d velocity and 1-d force) in [12]
and [13] has been reduced to a two dimensional one (1-d
velocity and 1-d force) for handling the isotropic surfaces
used in this study. Focus of the present paper lies in the pro-
cess of automatic assignment, i.e., steps 2 - 5. The overall
framework for automatic assignment is provided in Fig. 1.

The steps associated with automatic assignment are
addressed in the following sections. Perceptual space is
established in Section 3. Section 4 is dedicated to extraction
of image features and selection of the image features which
best describe the perceptual space. The Relationship
between image feature space and perceptual space is dis-
cussed in Section 6. Furthermore, the evaluation of the pro-
posed system is carried out in Section 7. The discussion,
based on the results, is given in Section 8. The paper is con-
cluded in Section 9.

1.1 Contributions

The major contributions of this study are listed below:

� Establishing a perceptual space by conducting a psy-
chophysical experiment with 84 real life textured
surfaces.

� Establishing a universal haptic texture library where
the 84 surfaces are stored along with their associated
image features.

� Proposing an automatic assignment algorithm for
haptic texture model assignment, which can be read-
ily used to assign data-driven haptic models to tex-
tured surfaces based on their images only.

1.1.1 Expected Outcomes

The shortcomings in data-driven modeling mentioned in
the above section can be overcome by adapting automatic
assignment algorithm. First, since the assignment calculates
image features from the new surface and then selects an
appropriate model based on those image features, haptic
models can be assigned to a large number of new surfaces
in a very short time (within seconds) using the automatic
assignment algorithm. This process takes far less time as

Fig. 1. Overall framework of haptic library and automatic assignment.
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compared to physically interacting with a large number of
surfaces and modeling them.

Second, haptic models are assigned using only images of
the new surfaces. This eliminates the need for physical pres-
ence of the target object or surface. The significance of this
technique is that we can render surfaces which are not phys-
ically available, such as the online shopping example dis-
cussed earlier or a 3D gaming environment.

Association of haptic property models with geometry can
also be achieved using the proposed algorithm. Although it
is not addressed in the manuscript, the concept is quite
straightforward to apply. Assume a mesh model with sur-
face texture. A haptic model can be assigned to each vertex
(or group of vertices) based on the surrounding texture.
Such an approach can alleviate the need for manual assign-
ment or tuning. Furthermore, a variety of 3D mesh models
along with textures are available. These can easily be
assigned haptic models based on the proposed algorithm.

1.2 Limitations

The proposed algorithm has been developed by applying
certain assumptions and restrictions which must be kept in
mind to achieve correct classification results. These assump-
tions and restrictions are detailed below.

� The resolution of the image used for classification
must be high enough to reveal surface topography.

� Only natural textures should be used as synthetic
textures can provide misleading image features.

� The proposed algorithm does not consider stiffness
of the surfaces for classification purposes.

2 BACKGROUND

This section covers three different aspects of literature. The
first part deals with the perceptual dimensions of haptic tex-
ture, the second part briefly elaborates the relationship
between visual and haptic texture, while the third part details
the previous techniques used for texture classification.

2.1 Perception of Tactile Textures

Interaction with textured surfaces can occur in two ways:
tool-based or bare-handed. Both these types of interactions
have received a lot of attention from the research community.
In case of bare-handed interaction, the researchers have
focused on finding the underlying factors or perceptual
dimensions that contribute towards the haptic texture per-
ception. Yoshida et al. [19] were among the first in finding the
perceptual dimensions for bare-handed interaction. They
reported four main dimensions for haptic texture, i.e., hard-
soft, heavy-light, cold-warm, and rough-smooth. Hollins
et al. used bipolar adjective scales to define the basic dimen-
sions in [20]. They identified smooth-rough and soft-hard as
the two main dimensions in haptic texture perception. In
summary, as corroborated by [21], haptic texture perception
mainly consists of three basic dimensions, i.e., rough-smooth,
hard-soft, and cold-warm (e.g., [22], [23]). However, authors
in [21] provide reasonable grounds to include friction as
another dimension to cater for the stickiness-slipperiness
of surfaces and that roughness dimension can be divided
into macro and micro roughness. On the other hand, for

tool-based interaction, Lamotte, in [24], showed that texture
perception varies along the hard-soft dimension. It was con-
cluded that participants were better at discriminating the dif-
ferences in softness when they used active tapping. Other
studies such as [25], [26] found that textural perception varies
along the rough-smooth dimension.

2.2 Visual and Haptic Texture

When a person looks at an object while investigating it with
hands, vision and haptics provide information about the
characteristics of that object. Vision mostly dominates the
information about shape, color, position, etc., while haptics
provide richer information regarding texture [17], [27]. Con-
trary to popular belief, S.J. Lederman et al. and M.A. Heller
showed, in separate studies, that vision and haptics perform
equally well in texture perception tasks [16], [27]. In fact, it
was argued that texture perception is intrinsically a bimodal
(visual and haptic) phenomenon and perception degrades if
observed through either of the individual modalities. Fur-
thermore, functional Magnetic Resonance Imaging (fMRI)
based studies showed that the two modalities are not inde-
pendent and provided evidence of a crossmodal interaction
in the visual and somatosensory cortices when texture infor-
mation is processed [17]. Dominance of a particular modal-
ity in a texture perception task is governed by the amount
of variance in the information available to that modality. To
this end, Ernst et al. modeled the human nervous system
responses using a maximum-likelihood integrator which
accepted visual and haptic cues as inputs and estimated the
role of each modality in perception [18]. All the above stud-
ies and numerous others suggest that visual and haptic tex-
ture perception operate in a flexible cooperation and that
there exists a common ground between them. In this study
we exploit this common ground to associate visual informa-
tion from images with haptic information in the form of
haptic texture models.

2.3 Haptic Texture Classification

A variety of studies have focused on images of materials for
surface texture classification. These studies differ mainly in
the kind of image features used for classification. One of the
earliest efforts in this area was provided by Haralick
et al. [28]. They used various features extracted from Grey
Level Co-occurrence Matrix (GLCM) for surface classifica-
tion. Others followed suit and calculated different features
from the image intensity values. In [29], the authors used
the GLCM features for color texture classification. Various
other studies used local binary pattern features [30], filter
bank features [31], binarized statistical image features [32]
etc, for texture classification. One of the major hindrances in
using these techniques for haptic texture classification is
that the classification is purely image based and as such can-
not be directly applied to haptic texture classification.

One of the emerging methods for texture classification in
the field of haptics is classification based on the vibration sig-
nals originating from tool-surface interaction. The tool is
loadedwith various sensors to record different aspects of the
interaction, i.e., scanning velocity, normal force, friction etc.
Stresse et al. [33] recorded acceleration signals originated
during free-hand exploration of texture surfaces. After-
wards, well-known audio features were extracted from the
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signals and used for classification and recognition of texture
surfaces. In addition to accelearation, Romano et al. [34] also
used the normal force, scanning velocity, and frictional force
experienced during the interaction. Theymodified the vibra-
tion according to the human perception by binning the fre-
quency domain on a non-linear scale. They achieved high
texture recognition rates despite varying physical contact
conditions by using a multi-class support vector machine
(MC-SVM). In [35], the authors used a custom built pen to
captured the acceleration, sound, frictional force, and images
of the surface during interaction. These data were used to
record six features for surface classification.

The common denominator among the above mentioned
studies is the physical acceleration signals and other
mechanical properties captured during tool-surface interac-
tion. It can be argued that features based on the mechanical
properties produce haptically better classification results.
However, generalizing this method to modeling outside-
library texture surfaces still remains a problem as it requires
interaction with the physical surface. Using the proposed
method, haptic model to an outside-library texture surface
can be assigned based only on the image of that particular
surface. Thus the current study enhances the robustness
and usability of the haptic modeling process.

3 PERCEPTUAL HAPTIC TEXTURE SPACE

In the perceptual haptic texture space, real life textured
surfaces are represented as points in an n-dimensional per-
ceptual space. We use Multidimensional Scaling (MDS)
analysis to represent the perceived texture of a textured sur-
face. Each surface is represented as a point in the perceptual
space. The distances among the textured surface locations
are chosen such that they represent the perceived dissimi-
larity between them. A psychophysical experiment was con-
ducted to find the dissimilarities between various real life
textured surfaces.

3.1 Establishing Perceptual Space

A cluster sorting experiment was carried out to find the dis-
similarities between the real life textured surfaces. The

authors in [36] show that cluster sorting can accurately cap-
ture the dissimilarity data. This dissimilarity data was used
to establish the haptic perceptual space.

3.1.1 Participants

A total of ten participants took part in the experiment. They
were paid for their participation. Their ages ranged from 22
to 31 years. The participants reported no disabilities and
had little or no expertise regarding the experiment.

3.1.2 Stimuli

The experiment consisted of 84 different real life textured
surfaces. These 84 textured surfaces were subjectively
selected in such a way that they captured the whole range of
daily life haptic interactions that happen in a common office.
The textured surfaces were glued to rigid acrylic plates of
size 100 � 100 � 5mm. The real life textured surfaces will be
referred to as ‘samples’ from here on for convenience. The
details of all the textured surfaces can be found in Fig. 2.

It should be noted that the participants were asked not to
judge the surfaces based on differences in stiffness, because,
all the surfaces were mounted on hard acryl plates which
augmented the actual stiffness of all the surfaces. Excluding
stiffness, all the other haptic properties were considered for
clustering the given surfaces.

3.1.3 Procedure

A table was placed in front of the participants. Instructions
to the participants were provided on a printed piece of
paper. After reading the instructions, the participants were
encouraged to ask questions regarding the experiment. The
participants wore a blindfold to restrict visual cues during
the experiment. The participants also wore headphones
playing pink noise. The volume of the pink noise was con-
trolled such that it masked the sound of interaction of hand
with the sample, while not obstructing normal conversation.
The experimental setup is shown in Fig. 3.

The experiment was a cluster sorting task similar to the
one carried out in [36], [37]. Participants were asked to

Fig. 2. Eighty-four real-life texture samples used in this study.
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sort the 84 samples into predefined number of groups.
They were asked to assign a given sample to a group based
on the similarities with other samples in that particular
group. A total of five trials were conducted per partici-
pant. The total number of groups in the five trials were
3, 6, 9, 12, and 15, respectively. The order of trials was
changed across participants to remove ordering bias. The
total number of groups across trials were varied because,
on one hand, a lower number of groups per trial ensured a
broader classification of the samples, while, on the other
hand, a higher number of groups ensured that the samples
were classified more precisely. This ensured that the trials
with lower number of total groups helped in forming
major groups in the sample set. The samples having a
vague perceptual resemblance were grouped together.
While, the trials with higher number of total groups
helped in gathering very similar samples into the same
groups, thus, providing groups with perceptually very
similar samples. The participants were free to use any
exploring strategy while interacting with the samples with
their bare-hands. Once all the samples were classified, the
participants were given a second chance to check all the
groups for any errors in classification. In case of an error,
they were allowed to assign it to a new group. The partici-
pants were allowed to take short breaks of five to ten
minutes between trials. On average the experiment took
150 minutes per participant excluding the break times.

3.1.4 Data Analysis

To convert the data into meaningful information, a similar-
ity matrix was formed from the similarity scores of all the
individual samples. Score to a pair of samples was assigned
based on the total number of groups present in that particu-
lar trial, and subsequently, the scores across all the trials
were added. For example, if a pair of samples was grouped
together in the trials with total number of groups at 3, 6,
and 9, then the total score for that pair would be 3 + 6 + 9 =
18. The sample pairs which were perceptually very similar
would be grouped across most of the trials and thus obtain-
ing a higher similarity score. This data was used to form a
similarity matrix for all the participants. Afterwards, the
similarity matrix was converted to a dissimilarity matrix ,
scaled from 0 to 1000, and averaged across all participants.

3.1.5 Results

Using the average dissimilarity matrix, non-metric MDS
analysis was performed. Based on the Kruskal stress [38], a
three dimensional representation was selected for the per-
ceptual space. The stress value at dimension three is 0.05,
which is considered as fair according to [39]. Furthermore,
the decrease in stress values after dimension three is rela-
tively small. The three dimensional MDS scatter graph of
the perceptual space and the Kruskal stress for the first ten
dimensions are shown in Fig. 4, and 5, respectively.

Fig. 3. Experimental setup for the cluster sorting task.

Fig. 4. Three dimensional MDS of perceptual space. The different shapes represent the different groups as a result of K-means clustering. The filled
red diamonds show the centroids of the groups.

Fig. 5. Kruskal stress values for the first ten dimensions of the 84-surface
and 105-surface perceptual spaces.
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The MDS scatter graph of the perceptual space, in Fig. 4,
shows distinctive trends and groupings, i.e., perceptually
similar samples are clustered together. The scattering of the
samples in the perceptual space follow a horseshoe curve.
The roughest samples occupy the right side of the curve in
the graph and as we move along the curve towards the left
side, the roughness of the samples gradually decrease. Addi-
tionally, the curve exhibits some width also. The inner side
tends to have softer samples as compared to the outer side .

It can be seen that the sandpaper samples which are dis-
tinctly different from all other surfaces, are located in a sep-
arate group in the right top corner of the graph. All other
samples are located along a continuum. On one end, it starts
with the surfaces having visible contours, e.g., steel and
plastic meshes etc. These were deemed as the roughest sam-
ples. Next are the surfaces which have a visibly rough sur-
face e.g., towel, carpet etc. The middle of the horseshoe
curve is occupied by the mildly textured surfaces, most of
them being fabrics. They include, cloth-hard-cover, jeans,
fine sand paper etc. The other end of the horseshoe contains
the smooth surfaces. Smooth surfaces are smooth shoe pad-
ding, aluminum, acrylic etc.

4 IMAGE FEATURE SPACE

In the image feature space, the visual texture of a surface is
represented as a multidimensional feature vector calculated
from an image of the surface. A total of 98 image features
were calculated from each surface using well known image
feature extraction techniques, constructing a 98 dimensional

vector. The details of all the image features used in this
study can be found in Table 1.

4.1 Image Capturing Setup

The finer details of image depend on the scale and resolu-
tion of the image. In an effort to remove the effects of scaling
and resolution, all the images were captured with the same
camera (SIGMA Digital Camera dp2 Quattro). The camera
was mounted on a tripod and placed directly over the sur-
face. The distance from the camera to the surface was kept
constant at 300 mm. Standard room lighting was used dur-
ing the capturing process. However, special care was taken
to guard against any shadows in the images. The images
were captured in high quality RAW format (loss less com-
pression, 14-bit). The images were cropped to a size of
300 � 300 pixels. The images were also converted to gray
scale in order to make them color independent.

4.2 Image Feature Selection

Given the large size of the image feature vector, it was infea-
sible to use all the features for prediction of perceptual hap-
tic texture. Therefore, the most correlated image features
with the MDS dimensions were selected through a sequen-
tial forward selection (SFS) algorithm. Afterwards, these
features were put through a parallel analysis test to check if
the resulting correlation values in the SFS are achieved by
chance or they bare some significance. Features with the
best predictive ability were highlighted as a result of paral-
lel analysis. The feature selection process is shown in Fig. 6.

TABLE 1
List of All the Image Features Used to Establish the Image Feature Space

GLRLM Features [40], [41], [42], [43] GLCM Features at d = 1,2,4 [28], [44]

Short Run Emphasis Sum of Squares Energy
Long Run Emphasis Sum Average Entropy
Gray-Level Nonuniformity Sum Variance Dissimilarity
Run-Length Nonuniformity Sum Entropy Contrast
Run Percentage Difference variance Cluster Prominence
Low Gray-Level Run Emphasis Difference entropy Correlation
High Gray-Level Run Emphasis Maximum probability Homogeneity�

Short Run Low Gray-Level Emphasis Information measures of correlation (1) Autocorrelation
Short Run High Gray-Level Emphasis Information measures of correlation (2) Cluster Shade
Long Run Low Gray-Level Emphasis Inverse difference moment normalized
Long Run High Gray-Level Emphasis
Gray-Level Variance
Run-Length Variance

GLSZM Features [40], [41], [42], [43] NGTDM Features [45] Gradient Features

Small Zone Emphasis Coarseness Non-Zero
Large Zone Emphasis Contrast Kurtosis
Gray-Level Nonuniformity Busyness Skew
Zone-Size Nonuniformity Complexity Percent 1
Zone Percentage Strength Percent 25
Low Gray-Level Zone Emphasis Percent 50
High Gray-Level Zone Emphasis Percent 75
Small Zone Low Gray-Level Emphasis Percent 90
Small Zone High Gray-Level Emphasis Percent 99
Large Zone Low Gray-Level Emphasis
Large Zone High Gray-Level Emphasis
Gray-Level Variance
Zone-Size Variance

Spatial Frequency

The bold face image features are the ten best image features.
�Homogeniety (GLCM) was seleceted for both d = 2 and 4.
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4.2.1 Sequential Forward Selection

A sequential forward selection algorithm [46] was applied
to reduce the dimension of the image feature vector
(98 features). The input to the algorithm is the 98 dimen-
sional image feature vector and the coordinate values of
the first three dimensions given by MDS. For every single
MDS dimension, the algorithm starts with the most corre-
lated image feature and predicts the output. The output is
in the form of the MDS dimension. A linear regression
model was used to predict the output. Then it adds a sec-
ond feature and predicts the output once again. It keeps
on adding features until the termination criterion is met.
The termination criterion in this case was either of, the
prediction error being significantly reduced p 5 0.05,
(using partial F-test) or a total of ten image features being
selected for each dimension. The number ten was empiri-
cally determined. For all the dimensions, the prediction
error was never significantly reduced for the first ten fea-
tures. Thus, we had a reduced feature set of 30 distinct
image features, ten per dimension. Repetition of features
occurred once we selected more than ten features per
dimension. Increase in number of features also reduces
the efficiency of the system due to curse of dimensional-
ity. Therefore, ten features were considered as sufficient
to explain the variations along a single dimension.

4.2.2 Parallel Analysis

Parallel analysis [47], [48] is carried out to see if the image
feature is really related to the perceived haptic texture and to
examine the predictability of the reduced feature compared
to that of a random data set with the same dimensions. Our
hypothesis is that the predictability of the reduced image fea-
ture subset should be higher than that of randomdata.

For the analysis, the reduced image feature subset of 30
image features was further divided into all possible subsets
of three image features. The predictive quality of every sub-
set was evaluated for the first three MDS dimensions using
linear regression. The output from regression was the MDS
coordinate values of the corresponding dimension. Subse-
quently, the correlations between the predicted values and
the actual MDS coordinate values were measured.

The same process was repeated for a randomly generated
data matrix which was of the same dimension as the
reduced image feature vector. The correlations between the
predicted output from random data subsets and actual
MDS coordinate values were also recorded.

The correlation values measured from the randomly gen-
erated matrix are the values that can be achieved by chance
and have no significance. Therefore, only those image fea-
ture subsets are significant which showed correlation values
higher than the maximum correlation from randomly gen-
erated data. Fig. 7 shows the correlation values for the
image feature subsets (see green bars) and the randomly
generated data (see red bars).

The maximum correlation for a random data subset was
0.47. To be on the safer side, a value of 0.50 was considered.
Image feature subsets with correlation higher than
0.50 were considered as significant. The frequency of fea-
tures constituting the significant image feature subsets was
calculated. The best features were the ones which occurred
most frequently in the significant feature subsets. The ten
features with the highest frequency were: Gray-level non-
uniformity (GLRLM); gray-level non-uniformity and small
Zone High Gray-level emphasis (GLSZM); gradient percen-
tile 25 percent (Gradient); correlation, homogeneity, infor-
mation measure of correlation (2), and inverse difference
moment normalized (GLCM at d = 4); homogeneity and
information measure of correlation (1) (GLCM at d = 2).
These features were selected for the automatic haptic model
assignment algorithm discussed in Sections 5 and 6.

4.3 Description of the Selected Image Features

This section provides a brief overview of the ten image fea-
tures obtained as a result of the image feature selection
process.

The GLCM is a matrix which considers the spatial rela-
tionships between two pixels at a time in the image. Correla-
tion measures the linear dependency of grey levels on those
of neighboring pixels. Homogeneity measures image homo-
geneity as it assumes larger values for smaller gray tone
differences in pair elements. The weights decrease exponen-
tially away from the diagonal. Inverse difference moment nor-
malized is a linear measure which calculates the gray tone
differences among pixels. Information measure of correlation 1
and 2 are statistically derived from the correlation measure.
The GLRLM looks at runs of pixels, rather than looking at
pairs of pixels, i.e., how many pixels of a given grey value
occur in a sequence in a given direction. Gray level non-
uniformity measures the similarity of gray level intensity
values in the run length matrix. The GLSZM looks at zones
of connected pixels, i.e., how many pixels of a given grey
value are connected in a single group. Gray level non-
uniformity measures the similarity of gray level intensity

Fig. 6. The two step process used for feature selection. Sequential for-
ward selection reduces image feature vector from 98 to 30 dimensions
based on correlation with perceptual space. Parallel analysis provides
the ten most correlated and significant features among the given 30.

Fig. 7. Correlation values for the image feature subsets and the ran-
domly generated data subsets with the first three MDS dimensions.
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values in the size zone matrix. Small zone high gray level
emphasis is a robust and highly discriminative statistical
measure since it includes the pixel information in addition
to the rows and columns of the size zone matrix. The 25 per-
centile gives the highest peak under which 25 percent of the
pixels are in the image.

5 RELATIONSHIP BETWEEN PERCEPTUAL HAPTIC

TEXTURE SPACE AND IMAGE FEATURE SPACE

Fig. 4 shows that the scatter graph of haptic perceptual
space exhibits distinct grouping of perceptually similar
samples while in Section 4, it was shown that there exists a
relation between the image feature space and the haptic per-
ceptual space. Based on this knowledge, it is assumed that
the image feature space could also be classified into groups
of haptic-perceptually similar images. For this purpose, a
Multi-Class Support Vector Machine (MC-SVM) [49] was
used in conjunction with K-means clustering [50].

Since the distribution of groups in image feature space
cannot be predicted, a one-versus-rest Multi-Class Support
Vector Machine (SVM) algorithm with a Radial Basis Func-
tion (RBF) kernel was used for clusterizing the image fea-
ture space. The use of RBF kernel was preferred since it can
handle both linearly separable as well as inseparable data.
Data in which clusters cannot be distinguished linearly is
called as linearly inseparable. The multi-class SVM algo-
rithm was tested for different values of the parameter
sigma, and the best results were obtained at sigma = 4.
Another possibility was to use deep learning as it is used in
various research areas and could provide better results, but
in this case it was not applicable due to the limited size of
our dataset. Similarly, other algorithms were also tried for
the classification, however, MC-SVM provided the best
results for our dataset. On the other hand, the clusterization
of perceptual space was carried out using k-means algo-
rithm. This clusterization falls under the umbrella of unsu-
pervised learning, and k-means is one of the most powerful
algorithm for unsupervised learning.

The reduced image feature set (ten image features) for all
the 84 samples was used as input for training the MC-SVM.
To provide labels for the SVM, k-means clusterization was
applied to the haptic perceptual space. The labels are used to
classify different samples into perceptually similar groups.
As shown in Fig. 4, perceptually similar samples are in close
proximity with one another. Therefore, as a result of the
k-means classification, perceptually similar samples were
grouped together. Since the overall range of samples used in
this study can subjectively be divided into 16 broad catego-
ries, the number of groups used in k-means was decided to
be 16. This grouping can be seen in Fig. 4. The imbalance in

the variance of the groups increases if the total number of
groups are increased beyond 16. While, a lower number of
total groups results in perceptually different surfaces being
grouped together. As a result, the image features were
labeled from perceptual clusterization and theMC-SVMwas
trained on this data. Consequently, a Haptic Texture Library
was formed where image features of texture surfaces were
directly associated with the perceptual haptic texture of the
surfaces. The trained model of MC-SVMwas used to classify
new texture surfaces to perceptually similar groups based on
the image features of the new surface.

6 AUTOMATIC HAPTIC MODEL ASSIGNMENT

The relationship established between image feature space
and the perceptual haptic texture space was used to auto-
matically assign haptic models to newly encountered tex-
tured surfaces. The automatic haptic model assignment was
a two-step process. First, the trained MC-SVM model was
used to assign a perceptually similar group to the new sam-
ple based on its image features. Second, an exact match
within the selected perceptually similar group was assigned
based on an image classification technique, known as Binar-
ized Statistical Image Features (BSIF) [32]. BSIF is a local
image descriptor specifically designed for encoding texture
information. It differs from other descriptors in the type of
filters used for convolution. Usually, these filters are manu-
ally predefined, whereas, in BSIF, these filters are learnt
from statistics of natural images. Since the surfaces used in
this study can also be considered as natural, BSIF provides
better modeling capacity as compared to other descriptors.
The overall framework for automatic haptic model assign-
ment is shown in Fig. 8.

The trained SVM model was used to assign a perceptu-
ally similar haptic model from the library to a new real life
texture surface. As a first step, the reduced image feature
set was calculated for the new sample. This image feature
set was used as a test input to the SVM model. The trained
SVM model then classified the new sample into one of the
groups, which were made in Section 5.

As a pre-process to the second step, binarized statistical
image features were calculated for all the surfaces in the
perceptual space. In the second step, BSIF features were cal-
culated for the new sample and compared to other samples
within the group selected in the first step. The comparison
was carried out using chi-squares distances. The haptic
model of the sample, within the selected group, having the
lowest distance to the new sample was assigned to it.

7 PERFORMANCE EVALUATION

A psychophysical experiment was conducted for evaluation
of the automatic assignment. The experiment was con-
ducted to check if the haptic model assigned by the algo-
rithm is perceptually similar to the new sample. The new
sample over here is the surface to which we wanted to
assign a haptic model using our algorithm.

7.1 Experiment

The design of the evaluation experiment was a cluster sort-
ing task similar to the one conducted in Section 3. The aim

Fig. 8. The process of assigning haptic models to newly encountered
textures.
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of this experiment was to validate the authenticity of the
automatic assignment algorithm. For this purpose, 21 new
outside-library samples were used and the automatic
assignment algorithm was used to assign them haptic mod-
els from the library. In the experiment, the 21 new samples
in addition to the earlier 84 surfaces were used and partici-
pants were asked to classify them into perceptually similar
groups. A perceptual space having these 105 samples was
built using MDS. This provided us ground truth data about
the 21 new samples in terms of their location in perceptual
space. Afterwards, the automatic assignment algorithm was
also used to assign haptic models to the new surfaces. If the
model assigned by the algorithm appeared in the same per-
ceptual group as in the experiment, the assignment was
considered to be correct. The details of the experiment are
provided in the following sections.

7.1.1 Participants and Stimuli

A total of six participants took part in the experiment. None
of the participants were part of the initial experiment for
building the perceptual haptic texture space. The partici-
pants reported no disabilities and had never been part of
such an experiment. They were paid for their participation.

The stimuli for the evaluation experiment were a set of
105 real life textured surfaces. The 84 samples used in
Section 3 and a new set of 21 real life textured samples con-
stituted the 105 samples. Each sample was mounted on an
acrylic plate of size 100 � 100 � 5 mm. Fig. 9 shows the
new set of 21 samples.

7.1.2 Procedure

The experiment was a cluster sorting task where the partici-
pants were asked to classify perceptually similar samples
into groups. A total of three trials were conducted per par-
ticipant, and the number of groups in these trials were 6, 9,
and 12. The number of groups in a particular trial were ran-
domly selected to avoid any bias. The rest of the details of
the experiment were the same as the previous experiment.

7.1.3 Data Analysis and Results

The data from the experiment was converted into a dissimi-
larity matrix and scaled from 0 to 1000. The dissimilarity val-
ues were calculated in the same way as in the initial
experiment in Section 3. MDS analysis was performed on the
dissimilarity matrix. The kruskal stress value for the first ten
dimensions is shown in Fig. 5. The stress value for three
dimensions is 0.062, which is considered as fair according
to [38]. Therefore, a three dimensional space was established

to visualize the new samples in relation to the old samples.
The space obtained as a result of MDS analysis was also
divided into 16 perceptually similar groups using K-means.
The scatter graph of the new space can be seen in Fig. 10.

7.2 Evaluation Criterion

On one hand, the automatic haptic model assignment algo-
rithm was used to assign haptic models to the new samples
based on their image features. On the other hand, in the
experiment, the participants classified the new samples into
different groups along with the old samples. After applying
K-means to the new space, all the samples were classified
into perceptually similar groups. The new samples also
appeared in these groups along side the old ones. These
groups would provide the ground truth for the automatic
haptic model assignment algorithm. An automatic assign-
ment of a haptic model would be deemed as correct only if
both the new sample and the corresponding assigned model
appeared in the same perceptual group in the new space.

The haptic models assigned to all the new samples were
evaluated based on the above strategy. A total of 15 out of
the 21 new samples were assigned perceptually correct
models i.e., the new samples and corresponding assigned
model appeared in the same perceptual group. The haptic
models assigned to the 21 new samples are presented in
Table 2. Fig. 10 shows the new samples and the correspond-
ing assigned models inside the new perceptual space.

After checking for the correct perceptual group assign-
ment, it was important to check if the assigned models and
new samples appear closer to each other inside a group. This
was checked in relation to the overall variance of the groups.
The average normalized variance of all the groups was 0.24
units in perceptual space. Based on this variance, the new
samples having smaller distances as compared to average
variance are considered as perceptually very similar to their
assigned model. The histogram in Fig. 11 shows that the
majority of samples exhibit far less distances as compared to
average variance. This means that the majority of assigned
models are perceptually very similar to the new surfaces.

7.3 Comparison between the 84-Surface and
105-Surface Perceptual Spaces

Figure 12 shows the comparison between the perceptual
spaces for 84 surfaces and 105 surfaces. The perceptual
spaces are represented in two dimensional cross sections for
better visualization for comparison purposes. To remove
scaling artifacts, both the spaces were scaled from zero to
one. All three dimensions of both the spaces largely follow
the same trends. Especially, the first two dimensions exhibit
remarkable similarity. This shows that the addition of 21
new surfaces did not alter the basic shape of the perceptual
space. The new surfaces either fitted inside or lie immedi-
ately outside the boundary of the convex hull created by the
original 84 surfaces.

Both spaces were divided into 16 clusters having variable
number of surfaces in each cluster. After examining the clus-
ters, it was evident that most of the groups largely carried
the same surfaces in both the perceptual spaces. Only 11 (out
of the original 84) surfaces in the 105-surfaces perceptual
space, residing on the cluster boundaries, had jumped into
the adjoining clusters. this behavior was expected since

Fig. 9. The 21 new textured surfaces used for evaluation.
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multidimensional scaling and kmeans optimize each point in
the space. However, it must be noted that the haptic library is
established based on the 84-surface perceptual space and the
105-surface perceptual space was established for evaluation
purposes only, i.e., to check if the new surface and its
assigned surface resided in the same group.

8 DISCUSSION

From Fig. 10, it can be seen that texture surfaces having visi-
ble rough texture (S88-Steel mesh1, S89-Model brick, S90-
Steel mesh2 etc.) or the ones having some degree of rough-
ness in texture (S86-Rough sandpaper, S87-Very rough
sandpaper, S93-Scrub etc) are quite accurately classified.
The image features from these surfaces were very clear and
the algorithm could readily differentiate the surfaces from
one another. On the other hand, the smooth surfaces (S102-
Playing card, S104-Glossy plastic) were incorrectly classified
due to the fact that the images captured from these surfaces
could not portray the surface micro geometry. This can be
accredited to the limitation of hardware since the camera
could not capture the surface details for these texture surfa-
ces. Thus the image features from these surfaces were not
clear and the algorithm classified them incorrectly.

Another set of surfaces that was wrongly classified was
the set of textured cloth2 (S100) and lined wood (S95). The

algorithm assigned a moderately rough sandpaper (S66) to
textured cloth2 (S100). Upon a closer inspection it was
revealed that the actual surface texture of the two surfaces
was quite similar and that the two should have been
assigned to the same group by the human subjects, while
building the actual perceptual space. Same was the case for
lined wood (S95) to which the algorithm assigned S73 (kite
paper). These two also resemble each other and should
have been placed in the same group.

After careful deliberation on the experimental process it
was noted that since S66 was a sandpaper and as soon as
it was encountered, human subjects would directly assign it
to the group where other sandpapers were previously
placed. This assignment usually took place without consid-
ering the actual surface details, instead the basis for
assignment were the material properties of the surface.
Additionally, sandpapers have a very peculiar surface and
are easily recognizable. This fact also aided the material
based assignment process. At the same time, textured cloth2
(S100) was equally rough but it was a fabric. The fact that it
was a fabric played a major role in it being assigned to a
completely different group as compared to the given
sandpaper.

The phenomenon where surfaces are classified based
on their material properties instead of actual textural

Fig. 10. The new perceptual space made up of 21 new and 84 old texture surfaces. The different colors (of circles) represent the different groups as a
result of K-means clustering. The stars show the centroids of these groups. The new surfaces are written in red color while the assigned models are
shown in bold black color.
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differences is called as Pre-Judgement in [51]. In pre-judgment
participants use their previous knowledge for classifying a
surface. A similar scenario developed for the lined wood
(S95) and kite paper (S73) pair, where S95 was a wood (clas-
sic case of pre-judgement) and S73was a kite paper.

The database of surfaces used in this study mostly com-
prises of everyday office/household materials. Further-
more, the texture of the surfaces was uniform and natural to
a large extent. Similarly, the 21 surfaces used for evaluation
also exhibited roughly the same properties. However, in
real life we encounter a multitude of surfaces which are not
represented in the current study. For example, organic sur-
faces, oily or wet surfaces, surfaces with artificial patterns,
etc. Thus, it can be said that the current library covers some
portion of the overall haptic space. Keeping this in mind, if
we test a surface which belongs to the same portion of the
overall haptic space as the library, the assigned model
would mostly be perceptually similar. However, if we test a
surface which lies far away from the library surfaces in the
haptic space, the assigned model despite being the closest

surface (among the library surfaces) would be perceptually
dissimilar to the test surface.

In case of a surface containing artificial patterns, the suc-
cess or failure of the algorithm depends on topography of
the surface. If the artificial patterns are significant enough to
mask the topography (or the surface is too smooth for the
camera to capture the topography), the algorithm would
fail to assign a perceptually similar surface. The playing
cards (S102) is an example of this phenomenon. On the
other hand, if the surface exhibits camera visible texture,
the algorithm can successfully assign a perceptually similar
surface from the library. For instance textured cloth1 (S99)
was successfully classified despite having artificial patterns.
It contains visible micro geometry which was readily
detected by the camera and the algorithm could assign a
perceptually correct model from the library.

It can be noted that the psychophysical experiment to
establish the perceptual space is based on bare-handed
interaction with the surfaces. The participants rated the dis-
similarities between different surfaces by directly interact-
ing with the surfaces using their hands. This data played a
significant role in formulating the automatic assignment
algorithm. On the other hand, most haptic rendering and
modeling algorithms consider a tool-based interaction with
the surfaces. It can be argued that this difference in mode of
interaction might cause different perceptual sensations.
However, in our previous study it was shown that the sen-
sations perceived through bare-handed and tool-based
interactions are largely similar [51]. It is also highlighted
that the different dimensions for both types of interactions
bare a high degree of correlation. Thus, in most cases the
classifications provided by the automatic assignment algo-
rithm will readily translate into perceptually correct haptic
models for tool-based haptic modeling and rendering envi-
ronments. On the other hand, it is possible that the differ-
ence in modes of interaction can result in a misclassification
by the automatic assignment algorithm. These errors, as
mentioned earlier, can originate due to the pre-judgement
phenomenon.

Here we would like to state that the textures used in [51]
were a subset of the textures used in this study. The percep-
tual space in [51] showed four dimensions, while the
perceptual space in the current study comprises of only
three dimensions. Upon a closer inspection it becomes evi-
dent that one of the four dimensions in [51] was related to
hardness-softness, which is not considered in this study.
Although adjective rating analysis of the current perceptual
space has not being carried out in this study, as the scope of
this article is different, it is safe to assume that the three
dimensions of the current perceptual space should relate
highly with the dimensions highlighted in [51].

Fig. 11. Histogram of the distances between new surfaces and the
assigned haptic models from the library.

Fig. 12. Comparison between 2-dimensional cross sections of the
3D perceptual spaces for 84 and 105 surfaces.

TABLE 2
Haptic Texture Models Assigned to the

21 New Texture Surfaces

New Texture
Surface

Assigned
Model

Remarks
Distance from

Assigned Model
(normalized 0-1)

85 30 Correct 0.05
86 26 Correct 0.07
87 61 Correct 0.04
88 47 Correct 0.09
89 60 Correct 0.01
90 76 Correct 0.02
91 73 Correct 0.07
92 73 Correct 0.12
93 7 Correct 0.04
94 7 Correct 0.14
95 73 Wrong 0.52
96 21 Wrong 0.86
97 50 Correct 0.13
98 7 Correct 0.01
99 24 Correct 0.08
100 66 Wrong 0.61
101 13 Correct 0.10
102 72 Wrong 0.95
103 48 Correct 0.06
104 61 Wrong 0.88
105 43 Wrong 0.92

Classification accuracy 71.4%
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Image feature extraction is one of the core parts of the
current system. During the course of this research it was
found that the image capturing process should be delib-
erated carefully. The image capturing mechanism should
be robust and repeatable in order to extract meaningful
image features. Especially, the lighting conditions and
clarity of texture play a vital role. The images should be
captured with a good quality camera in good lighting
conditions.

9 CONCLUSION

Our research concludes that visual features extracted from
the image, if carefully selected, can reveal important physical
characteristics related to perceptual haptic surface texture.
Based on this relation, perceptual haptic models library was
established and haptic models were assigned automatically
to a given surface. The proposed system showed reasonable
accuracy in assigning perceptually similar haptic texture
models. This research can help in standardization and sim-
plification of the haptic texture modeling and rendering pro-
cess. It can eliminate the need for building a haptic model for
every surface, instead, a perceptually similar model can be
assigned to a given surface from the library.
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